Computation of a specified root of a polynomial system of equations using eigenvectorsø
نویسندگان
چکیده
We propose new techniques and algorithms for the solution of a polynomial system of equations by matrix methods. For such a system, we seek its specified root, at which a fixed polynomial takes its maximum or minimum absolute value on the set of roots. We unify several known approaches and simplify the solution substantially, in particular in the case of an overconstrained polynomial system having only a simple root or a few roots. We reduce the solution to the computation of the eigenvector of an associated dense matrix, but we define this matrix implicitly, as a Schur complement in a sparse and structured matrix, and then modify the known methods for sparse eigenvector computation. This enables the acceleration of the solution by roughly factor D, the number of roots. Our experiments show that the computations can be performed numerically, with no increase of the computational precision, and the iteration converges to the specified root quite fast. © 2000 Elsevier Science Inc. All rights reserved. AMS classification: 15A18; 12E12; 65F15; 68Q40
منابع مشابه
Solving Single Phase Fluid Flow Instability Equations Using Chebyshev Tau- QZ Polynomial
In this article the instability of single phase flow in a circular pipe from laminar to turbulence regime has been investigated. To this end, after finding boundary conditions and equation related to instability of flow in cylindrical coordination system, which is called eigenvalue Orr Sommerfeld equation, the solution method for these equation has been investigated. In this article Chebyshev p...
متن کاملNumerical solution of a system of fuzzy polynomial equations by modified Adomian decomposition method
In this paper, we present some efficient numerical algorithm for solving system of fuzzy polynomial equations based on Newton's method. The modified Adomian decomposition method is applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms.
متن کاملSymbolic computation of the Duggal transform
Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...
متن کاملNUMERICAL SOLUTION OF THE MOST GENERAL NONLINEAR FREDHOLM INTEGRO-DIFFERENTIAL-DIFFERENCE EQUATIONS BY USING TAYLOR POLYNOMIAL APPROACH
In this study, a Taylor method is developed for numerically solving the high-order most general nonlinear Fredholm integro-differential-difference equations in terms of Taylor expansions. The method is based on transferring the equation and conditions into the matrix equations which leads to solve a system of nonlinear algebraic equations with the unknown Taylor coefficients. Also, we test the ...
متن کامل